Extensions 1→N→G→Q→1 with N=C22 and Q=C3xD8

Direct product G=NxQ with N=C22 and Q=C3xD8
dρLabelID
C2xC6xD896C2xC6xD8192,1458

Semidirect products G=N:Q with N=C22 and Q=C3xD8
extensionφ:Q→Aut NdρLabelID
C22:(C3xD8) = A4xD8φ: C3xD8/D8C3 ⊆ Aut C22246+C2^2:(C3xD8)192,1014
C22:2(C3xD8) = C3xC8:7D4φ: C3xD8/C24C2 ⊆ Aut C2296C2^2:2(C3xD8)192,899
C22:3(C3xD8) = C3xC22:D8φ: C3xD8/C3xD4C2 ⊆ Aut C2248C2^2:3(C3xD8)192,880

Non-split extensions G=N.Q with N=C22 and Q=C3xD8
extensionφ:Q→Aut NdρLabelID
C22.1(C3xD8) = C3xC4oD16φ: C3xD8/C24C2 ⊆ Aut C22962C2^2.1(C3xD8)192,941
C22.2(C3xD8) = C3xC22.SD16φ: C3xD8/C3xD4C2 ⊆ Aut C2248C2^2.2(C3xD8)192,133
C22.3(C3xD8) = C3xD8:2C4φ: C3xD8/C3xD4C2 ⊆ Aut C22484C2^2.3(C3xD8)192,166
C22.4(C3xD8) = C3xC22.D8φ: C3xD8/C3xD4C2 ⊆ Aut C2296C2^2.4(C3xD8)192,913
C22.5(C3xD8) = C3xC16:C22φ: C3xD8/C3xD4C2 ⊆ Aut C22484C2^2.5(C3xD8)192,942
C22.6(C3xD8) = C3xQ32:C2φ: C3xD8/C3xD4C2 ⊆ Aut C22964C2^2.6(C3xD8)192,943
C22.7(C3xD8) = C3xC22.4Q16central extension (φ=1)192C2^2.7(C3xD8)192,146
C22.8(C3xD8) = C3xC2.D16central extension (φ=1)96C2^2.8(C3xD8)192,163
C22.9(C3xD8) = C3xC2.Q32central extension (φ=1)192C2^2.9(C3xD8)192,164
C22.10(C3xD8) = C3xC16:3C4central extension (φ=1)192C2^2.10(C3xD8)192,172
C22.11(C3xD8) = C3xC16:4C4central extension (φ=1)192C2^2.11(C3xD8)192,173
C22.12(C3xD8) = C6xD4:C4central extension (φ=1)96C2^2.12(C3xD8)192,847
C22.13(C3xD8) = C6xC2.D8central extension (φ=1)192C2^2.13(C3xD8)192,859
C22.14(C3xD8) = C6xD16central extension (φ=1)96C2^2.14(C3xD8)192,938
C22.15(C3xD8) = C6xSD32central extension (φ=1)96C2^2.15(C3xD8)192,939
C22.16(C3xD8) = C6xQ32central extension (φ=1)192C2^2.16(C3xD8)192,940

׿
x
:
Z
F
o
wr
Q
<